On Schwarz's domain decomposition methods for elliptic boundary value problems
نویسندگان
چکیده
We study the additive and multiplicative Schwarz domain decomposition methods for elliptic boundary value problem of order 2r based on an appropriate spline space of smoothness r ? 1. The nite element method reduces an elliptic boundary value problem to a linear system of equations. It is well known that as the number of triangles in the underlying triangulation is increased, which is indispensable for increasing the accuracy of the approximate solution, the size and condition number of the linear system increases. The Schwarz domain decomposition methods will enable us to break the linear system into several linear subsystems of smaller size. We shall show in this paper that the approximate solutions from the multiplicative Schwarz domain decomposition method converge to the exact solution of the linear system geometrically. We also show that the additive Schwarz domain decomposition method yields a preconditioner for the preconditioned conjugate gradient method. We tested these methods for the biharmonic equation with Dirichlet boundary condition over an arbitrary polygonal domain using C 1 cubic spline functions over a quadrangulation of the given domain. The computer experiments agree with our theoretical results.
منابع مشابه
Bivariate Spline Method for Navier-Stokes Equations: Domain Decomposition Technique
On Schwarz's domain decomposition methods for elliptic boundary value problems, submitted for publication, 1996. 6. M. J. Lai and P. Wenston, Bivariate spline method for numerical solution of steady state Navier-Stokes equations over polygons in stream function formulation, submitted, 1997. Bivariate spline method for numerical solution of time evolution Navier-Stokes equations over polygons in
متن کاملSubstructure Preconditioners for Elliptic Saddle Point Problems
Domain decomposition preconditioners for the linear systems arising from mixed finite element discretizations of second-order elliptic boundary value problems are proposed. The preconditioners are based on subproblems with either Neumann or Dirichlet boundary conditions on the interior boundary. The preconditioned systems have the same structure as the nonpreconditioned systems. In particular, ...
متن کاملHeterogeneous Domain Decomposition for Singularly Perturbed Elliptic Boundary Value Problems
A heterogeneous domain-decomposition method is presented for the numerical solution of singularly perturbed elliptic boundary value problems. The method, which is parallelizable at various levels, uses several ideas of asymptotic analysis. The subdomains match the domains of validity of the local [ “inner” and “outer”) asymptotic expansions, and cut-off functions are used to match solutions in ...
متن کاملProbabilistically-induced domain decomposition methods for elliptic boundary-value problems
Monte Carlo as well as quasi-Monte Carlo methods are used to generate only few interfacial values in two-dimensional domains where boundary-value elliptic problems are formulated. This allows for a domain decomposition of the domain. A continuous approximation of the solution is obtained interpolating on such interfaces, and then used as boundary data to split the original problem into fully de...
متن کاملA Multiplicative Schwarz Adaptive Wavelet Method for Elliptic Boundary Value Problems
A multiplicative Schwarz overlapping domain decomposition method is considered for solving elliptic boundary value problems. By equipping the relevant Sobolev spaces on the subdomains with wavelet bases, adaptive wavelet methods are used for approximately solving the subdomain problems. The union of the wavelet bases forms a frame for the Sobolev space on the domain as a whole. The resulting me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 84 شماره
صفحات -
تاریخ انتشار 2000